Social Welfare Functions and CBA

- CBA Compare costs and benefits across individuals:
 - Producers
 - Consumers
 - Taxpayers
 - Third parties (external effects)

Social Welfare Functions and CBA

- Traditional CBA measures:
 - NPV, CBR, IRR, etc.
 - Add up monetary values of benefits and costs to all affected parties
 - All benefits and costs have equal weight
 - What are the implications of this assumption?
 - Makes strong assumption about the social benefits of monetary benefts/costs to different individuals in society

II U_{b} All points in Zone I $\cdot U^{I}$ preferred to U⁰ $U^1 P U^0$? U^{0} Ш IV All points in U^2 Zone III $U^2 P U^0$?

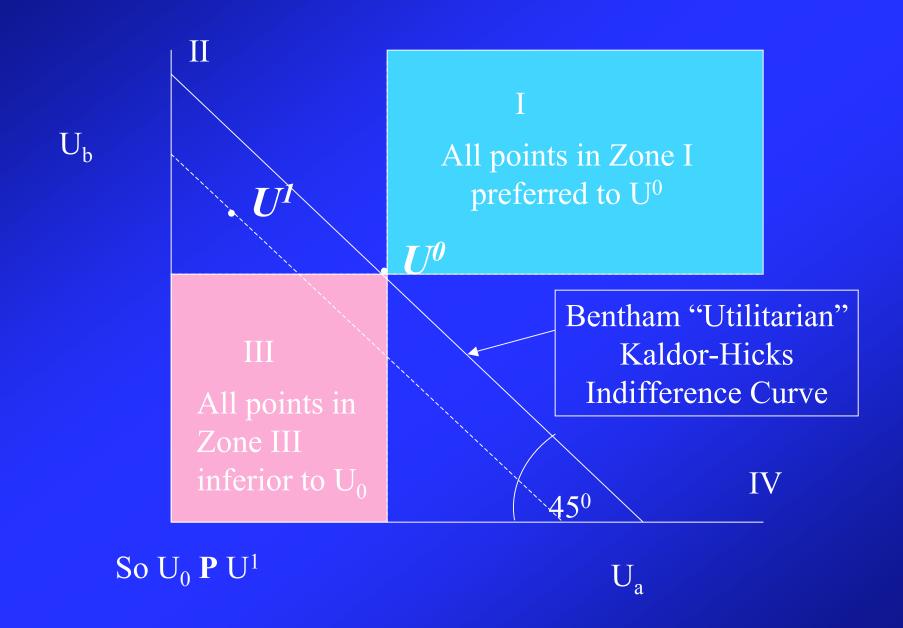
Bentham - Utilitarian

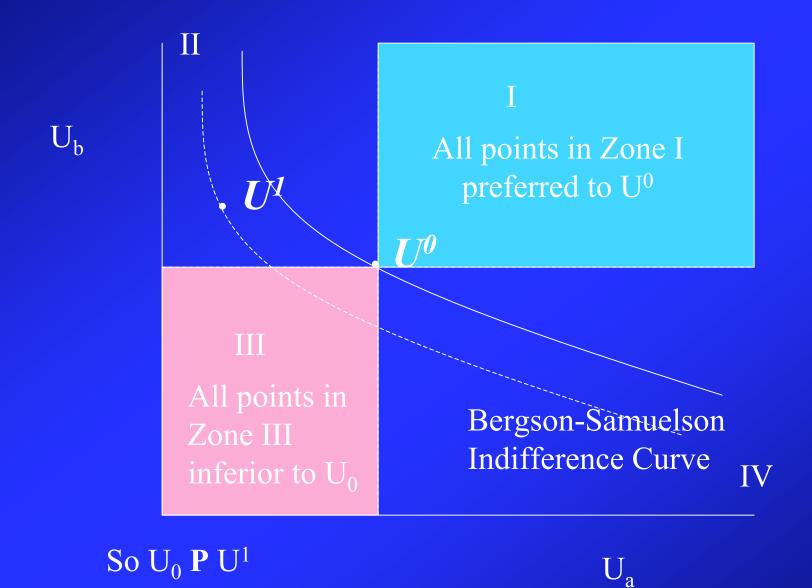
- $W = U_1 + U_2 + U_3 + \dots$
- All individuals have equal weight
- $dW = \sum_{i} (\delta U_{i}/\delta Y_{i})^{*} dY_{i}$ $- \delta W/ \delta U_{i} = 1 \quad \forall i$
- In standard CBA, assume
- $(\delta U_i/\delta Y_i) = 1 \ \forall i$
- This assumption not necessary, but then need estimates of $\delta U_i/\delta Y_i$ for all i

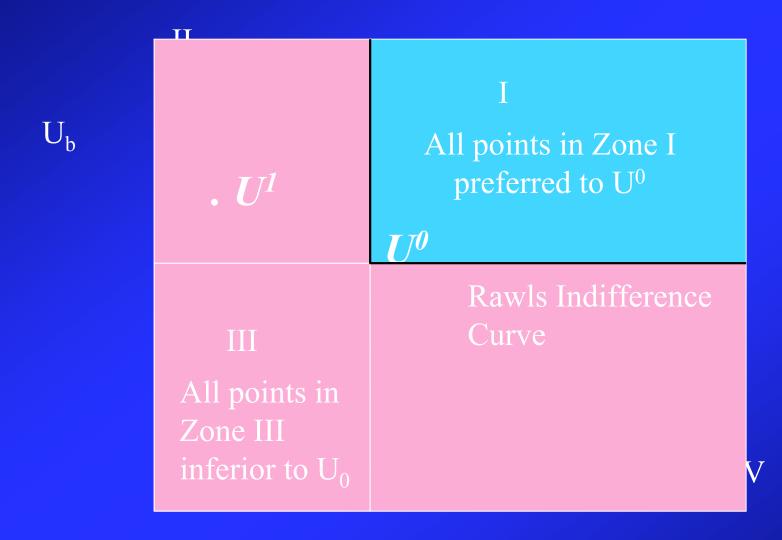
Kaldor - Hicks

- Kaldor winners from a project could in principle compensate the losers from a project
- Hicks Losers from a project cannot bribe the winners not to undertake the projet
- Assumes $\delta U_i / \delta Y_i = \delta U_j / \delta Y_j$
- Or, MU(Income) is equal for all individuals
- And $\delta W/\delta U_i = \delta W/\delta U_i$

Bergson-Samuelson Social Welfare Function


- $W = F(U_1, U_2, U_3, ...)$
- Diminishing MRS
- $dW = \sum_{i} (\delta W / \delta U_{i}) (\delta U_{i} / \delta Y_{i}) dY_{i}$
- So need estimates of:
 - Marginal utility of income for all i
 - Marginal contribution to social welfare of utility for all i

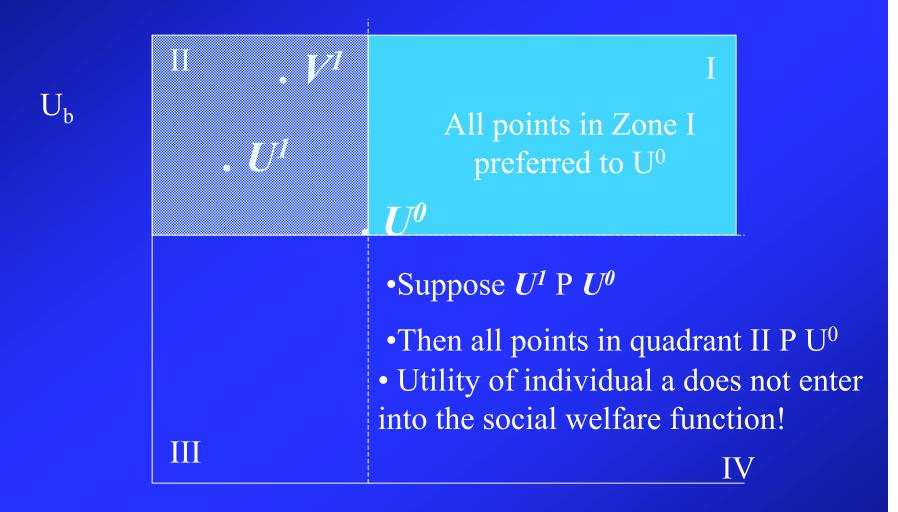

Rawls Social Welfare Function


- $W = Min_k(U_k)$
- dW=dU_{min}
- Social welfare depends on utility of worst-off individual
- Moral basis "veil of ignorance"
- Choose outcomes for all individuals in society, but the chooser does not know which individual in society he will be
- Assumes complete risk aversion

Social Welfare Functions

- Compare forms of these different Social Welfare Function forms:
 - Benthan "Utilitarian" & Kaldor/Hicks
 - Bergson Samuelson
 - Rawls
- Compare forms of indifference curves

So U₀ P U¹


Ua

Social Welfare Functions

- Arrow Impossibility Theorem:
- Without a cardinal measure of utility (a unit of measure of utility across individuals), impossible to identify a "well-behaved" social welfare function

- Problems of aggregating welfare across individuals if utility functions can be defined only to an increasing monotonic transformation
- All monotonic transformations of a given utility functions should provide same information:
- If u(x) > u(y) and $v(x) > v(y) \forall x,y$
- Then u, v are equivalent utility functions.

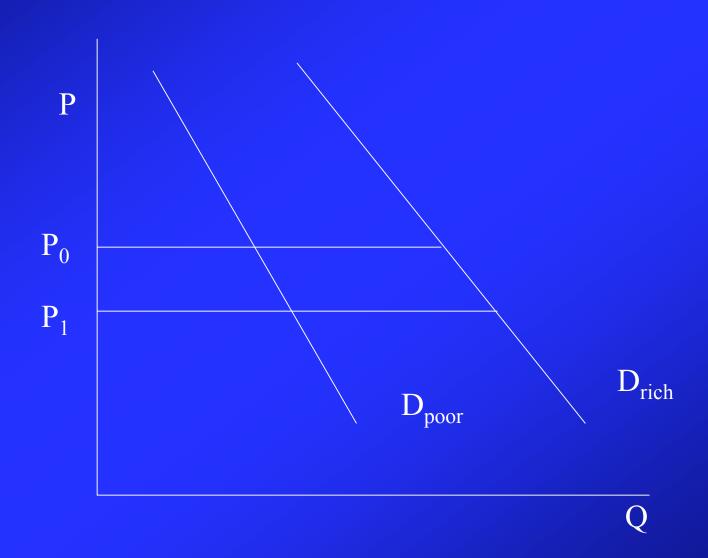
- $U_a^1 < U_a^0; U_b^1 > \overline{U_b^0}$
- Any monotonic transformation of U_a, U_b will maintain same ranking, so is equivalent utility mapping
- Consider $V = \Psi(U_a, U_b)$
- Any Ψ which preserves $V_a^{\ 1} < V_a^{\ 0}$; $V_b^{\ 1} > V_b^{\ 0}$ is an equivalent mapping to U.
- So any point in quadrant II must have same preference mapping as U¹ relative to U⁰

• Problems of identifying social preferences through voting schemes

	A	В	C
Smith	3	2	1
Jones	1	3	2
Arrow	2	1	3

3=most preferred, 1 = least preferred

Smith and Arrow Prefer A to B Smith and Jones prefer B to C Jones and Arrow prefer C to A


- Majority voting can lead to intransitive preferences:
- Suppose vote only on two options:
 - A **P** B (Smith and Arrow)
 - − B **P** C (Smith and Jones)
 - − C **P** A! (Jones and Arrow)
- Also, voting cannot measure the *intensity* of individuals' preferences

- Note Impossibility Problems not relevant for Rawls Social Welfare function
- Does not make inter-personal comparison
- Depends only on welfare of least well-off person
- But cannot answer many real-world problems which involve tradeoffs
- Or else, implies extreme preference for status quo

Boardman et al.

- Arguments for treating Low- and High-Income groups differently in CBA
 - 1. Diminishing MU of Income
 - 2. Social preference for more equal income distribution
 - 3. Impacts measured as changes in changes in CS or PS, rich consumers (or large firms) have more weight in the calculation

Change in CS, Rich and Poor Consumers

Reasons for weighting different income levels

Note that the arguments of:

- 1. Lower MU(income) of rich individuals, and
- 2. Higher measured impacts of price changes tend to offset each other.

Social Welfare Functions

- Theoretical dilemma:
 - Cannot measure utility, so direct interpersonal comparisons are not possible
 - Without direct interpersonal comparisons,
 impossible to define social welfare function
- Normal procedure in CBA, assume:
 - $-\delta W/\delta U_i = \delta U_i/\delta Y_i = 1$